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1. Gradient of the pose estimation loss to pose
parameters in 3DGS
The gradient of the loss function L to x is used to refine the

initial pose T as introduced in Subsection 3.3 of the main
paper. It is defined as follows:

oL _ (OLOI OLOR\OV
ox \0IdV = ORIV ) ox
The derivatives gf gé, and 6V are relatively straightfor-

ward to compute and can be efﬁmently implemented using
PyTorch’s autograd framework. Consequently, the primary
challenge lies in the computation of - 31 and 5 83 . Given that
the rendering processes of I and R are analogous we focus
on [ as a representative example to elucidate the procedure
for clarity. The gradient calculation formula is as follows:

ﬂ 813u+8182’_ or n or 2)
ov. owov oxov  \ov/), \ov),’

where the first and second parts represent the gradient back-

tracked through the 2D mean p’ and covariance matrix Y’

of the 3D Gaussian. Next, we compute these two parts sep-
arately.

1.1. Mean Component

3D Gaussians are projected to 2D Gaussians for rendering
a 2D image with the following 2D mean p':

r_ |
ILL = =
M2
T
where [(Ehomv Yhom s Zhom whom]
spective matrix and p. = V.

Lhom
Whom
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Yhom ( )
Whom

= Pu., P is the per-

Let Fy = PV represent the composition of the perspec-
tive and view transformations, we calculate:
1 oI
Whom 8,“1
oI
o1 Tr—
— hom OH2
— = sz z 1/. 4
2 ) [z y ] (4)
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where a and 371 can be computed with the CUDA ker-
nels prov1ded by the original 3DGS [1]. So, we compute
the first term of 8{/ as:

A\ < o
(av)lgai - Bi, (6)

A= ®)

where

a; = [Pj1, Pia, Pi3, P ,
oI oI oI
Bi = {(81“1) (Tﬂ)ﬂ? (TFl>i37 (TFJ@‘J ‘

1.2. Covariance Component

The projected 2D covariance matrix X’ can be represented
as:
Y =JwEwTJT, ©)

where W is the 3x3 part on the top left of the view matrix
V. J is the Jacobian matrix of perspective transformation

at fe:

1/:“0,2 0 _MC,O//’L?,Q
J = 0 1/.“@,2 7.“0,1//}%,2 5 (8)
tre,0/l pre1/1 Hey2/l

where [ = H (I‘LC,07 He,1, Mc,2>TH [4]
According to Eq. 8, we obtain J in the camera space ..

Let F, = JW, we compute the second term of g—{/ as:
oI ah +amd o
> ) = ) ©)
v/, O 0

where a and ‘9—FI can be compute with the CUDA ker-

nels prov1ded by the 3DGS. Finally, we can optimize the
camera pose of 3DGS. To improve efficiency, our adapted
backpropagation module computes gradients for pose es-
timation, skipping those required for training standard 3D
Gaussians.
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2. More Results Obiects | Pixels AUROCT Images AUROC?
Jects | OmniAD ~ SplatPose  Our | OmniAD  SplatPose ~ Our
2.1. Quantitative Results Axletree 98.1 98.1 995 | 77.0 773 953
Box 98.1 95.8 99.3 78.6 86.8 95.9
. . . Can 99.0 97.8 994 9.1 95.5 99.9
Quantitative comparisons on synthetic datasets — Ta- Chain 08.9 975 99.1 | 956 984 1000
bles 1 and 2. The quantitative comparison of the base- Gear 95.8 95.6 97.1 | 98.1 88.6 99.7
. . Keyring 99.3 98.8 99.5 98.4 100.0  100.0
line metbods and our proposefi approach on each ob]§ct of Motor st 957 o T 776 e
MAD-Sim [3] and our synthetic dataset are presented in Ta- Parts _ 952 995 | . 54.1 994
bles 1 and 2, respectively. Compared to Table 3 in the main Picker 98.0 98.7 9.4 962 93.3 99.4
th i . detailed insichts. Th Section - 96.2 992 | - 82.6 99.5
paper, these comparisons offer more detailed insights. The Shaft 992 987 906 | 991 o4 1000
experiments demonstrate that our method achieves signifi- Spray_can | 98.8 98.9 993 |  63.1 9.7 100.0
cantly better performance than the baselines regarding pixel Spring 99.6 99.3  BOISBENE0H 824 N
. Sprockets 98.9 98.7 99.6 97.8 96.4 99.2
and image-level AUROC. Amphora | 85.2 99 975 | 576 763 795
Teapot 88.7 96.4 97.6 50.4 79.5 87.8
4 | Pixels AUROCT Images AUROCT MEAN | 96.93 97.39  [99.01| 84.87 8587 | 96.65
Objects | OmniAD ~ SplatPose  Our | OmniAD ~ SplatPose  Our
Gorilla 99.5 99.5 99.8 93.6 91.1 97.4 Table 2. Anomaly detection; our dataset (synt) — Comparisons
Unicorn 98.2 99.7 99.7 94.0 98.8 99.4 foixel and i level AUROC. The best result ) ded
Mallard 974 99.7 99.8 94.7 97.7 993 OI pixel and 1mage-1eve . € bestresulls are color-coaed.
Turtle 99.1 99.5 994 | 956 97.1 96.8
Whale 98.3 99.5 996 | 925 97.9 99.9 ) | Pixels AUROCT Images AUROCT
Bird 95.7 99.5 99.4 92.4 92.9 98.0 Objects | OmniAD ~ SplatPose  Our | OmniAD  SplatPose  Our
owl 99.4 99.2 996 | 882 88.0 93.9
Sabertooth | 98.5 99.4 99.3 95.7 96.6 98.6 Valve 973 92.9 99.3 91.7 74.1 98.8
Swan 98.8 99.3 994 | 865 937 97.7 Tube 972 99.5 99.6 95.7 81.5 94.7
Sheep 97.7 99.6 994 | 90.1 96.5 98.5 Cup 9.5 98.8 99.5 63.6 83.1 9.5
Pig 97.7 99.8 99.8 88.3 96.7 99.0 USB 96.1 99.1 99.4 51.8 41.9 55.8
Zalika 99.1 89.5 99.5 88.2 99.3 94.2 Joint 94.0 99.6 99.7 57.6 100.0  100.0
Pheonix 99.4 99.5 99.7 823 84.6 94.0 PaperCup | 91.5 98.7 99.1 62.1 71.4 91.1
Elephant 99.0 99.7 996 | 925 953 99.3 Lighter 98.5 99.5 99.8 88.0 90.9 99.9
Parrot 99.5 99.5 99.5 97.0 93.6 99.8 Cube 973 99.0 99.3 89.7 935 87.7
Cat 97.7 99.6 99.5 84.9 86.1 93.1 Lamp 85.5 94.6 95.8 95.6 73.8 95.4
Scorpion 95.9 99.4 992 | 915 99.3 99.7 Bolt 95.6 98.0 98.9 90.3 83.5 99.1
Obesobeso | 98.0 99.5 989 | 971 96.1 91.9 Filter 9.6 99.7 99.9 787 81.9 97.0
Bear 99.3 99.6 99.5 98.8 98.9 99.8 Wand 92.7 98.1 99.6 39.1 76.0 94.4
Puppy 98.8 99.1 994 | 935 97.1 97.8 Wheel 95.6 96.5 97.1 48.1 713 94.8
MEAN | 9835 9901 9950 | 9187 9487 9741 Bearing 7.6 %81 [97T] 98 885 I
MEAN | 94.86 98.01 9905 73.20 79.82 | 92.63

Table 1. Anomaly detection; MAD-Sim dataset — Comparisons
of pixel and image-level AUROC. The best results are color-coded.

Quantitative results on real dataset — Table 3. The de-
tailed performance of the baselines and our method on our
real dataset are reported in Table 4 of the main paper and
are reproduced in Table 3 here for convenience. The com-
parisons show that our method significantly outperforms the
other two methods in pixel-level and image-level AUROC.

2.2. Qualitative Results - Figure 1

We provide qualitative comparisons for all objects in our
real dataset in Figures 1 to 3, as a supplement to Figure 6
in the main paper. For each object, one randomly selected
defect type is showcased. For the three objects featured in
Figure 6 of the main paper (Filter, Wheel, and Valve), we
vary the camera pose, defect size, and defect type to pro-
vide a broader comparison. Our method accurately detects
anomalies even when the lighting conditions of the query
images differ from those of the training images.

Table 3. Anomaly detection; our dataset (real) — Comparisons
of pixel and image-level AUROC. The best results are color-coded.

3. Ablation Studies

As claimed in lines 401-403 of the main paper, we provide
the ablation study results on our complete synthetic and real
datasets in Tables 4 to 6. CL denotes the data with consistent
lighting, and /L refers to the data with inconsistent lighting
(marked with a gray background).

Pose initialization and optimization — Table 4. Our
method utilizes reflectance images for pose initialization
and combines them with color images for pose estimation.
To validate the effectiveness of this strategy, we evaluate
various configurations. We denote the use of color (I)
and reflectance (R?) images in a module. As shown in Ta-
ble 4, the selected configuration (R+IR) performs best, es-
pecially for data with inconsistent lighting. While there is
a slight drop in pixel-level AUROC for lighting-consistent
data compared to using only color images (I+I), this is ex-
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Query Reference OmniposeAD SplatPose Our

Figure 1. Qualitative comparisons on anomaly detection (Part 1 of 3). In the left two columns, we visualize the query images and
reference images. The right three columns compare the heatmaps generated by our method and the baselines.
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Reference OmniposeAD SplatPose Our

Figure 2. Qualitative comparisons on anomaly detection (Part 2 of 3). In the left two columns, we visualize the query images and
reference images. The right three columns compare the heatmaps generated by our method and the baselines.
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Figure 3. Qualitative comparisons on anomaly detection (Part 3 of 3). In the left two columns, we visualize the query images and
reference images. The right three columns compare the heatmaps generated by our method and the baselines.

pected. The quality of the rendered reflectance image is lim-
ited by the pre-trained RetinexNet [2], which has not been
fine-tuned on our dataset. Moreover, the rendered color
reference image remains accurate under consistent lighting
conditions.

Weights of pose optimization loss — Table 5. We analyze
the impact of A in the pose optimization loss in Table 5. A
weight of 0.6 was chosen to achieve the best performance
overall. This reveals that the high-frequency gradients of
the color channel are still beneficial for fine-grained regis-
tration.

Loss components for anomaly detection — Table 6. We
conducted three ablation experiments on different combi-
nations of color and reflectance features for anomaly detec-
tion, as shown in Table 6. The results demonstrate that the
color or reflectance feature alone may be more accurate at
detecting differences at a pixel level, while their combina-
tion offers better detection performance and yields the best
results overall.
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. . Pixels AUROCT Images AUROCT

Class Objects ] R R+R RAR | R R+R R+IR
Valve 99.8 99.7 94.5 993 973 95.1 98.8 98.8

Tube 99.6 99.6 98.9 99.6 95.8 92.4 89.4 94.7

Cup 99.2 99.4 96.8 99.5 95.5 95.3 62.0 92.5

USB 99.4 99.4 94.9 99.4 522 52.4 52.0 55.8
Joint 99.6 99.7 99.7 99.7 100.0 100.0 99.9 100.0

PaperCup 99.3 99.6 99.1 99.1 85.9 99.0 86.6 91.1

Real Lighter 99.8 99.7 99.2 99.8 98.6 100.0 100.0 99.9
Cube 99.9 99.1 98.0 993 100.0 95.2 69.5 87.7

Lamp 97.4 97.4 93.7 95.8 100.0 100.0 91.6 95.4

Bolt 99.7 98.6 98.0 98.9 92.8 92.0 99.1 99.1

Filter 99.9 99.9 98.4 99.9 97.7 97.7 77.1 97.0

Wand 99.5 993 99.4 99.6 93.1 89.2 92.4 94.4

Wheel 97.1 96.7 89.3 97.1 925 923 593 94.8

Bearing 99.6 99.6 925 99.7 91.7 91.7 49.7 95.6

Axletree 96.4 963 93.0 99.5 778 69.4 61.8 95.3

Box 99.1 99.1 99.2 99.3 90.0 89.9 92.8 95.9

Can 99.5 99.5 99.2 99.4 99.9 99.9 100.0 99.9
Chain 99.2 99.2 98.9 99.1 100.0 100.0 100.0 100.0

Gear 973 973 97.0 97.1 97.7 99.7 99.7 99.7
Keyring 99.5 99.5 99.5 99.5 100.0 100.0 100.0 100.0

Motor 99.1 99.0 98.9 99.0 983 98.4 98.5 98.4

Syt Parts 99.6 99.6 99.4 99.5 99.4 99.4 99.4 99.4
Picker 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4

Section 99.2 99.2 99.2 99.2 99.5 99.5 99.4 99.5
Shaft 99.7 99.7 99.4 99.6 100.0 100.0 100.0 100.0
Spray can 99.3 99.3 99.3 99.3 100.0 100.0 100.0 100.0

Spring 99.6 99.6 99.6 99.5 922 92.4 92.6 92.4

Sprockets 99.6 99.6 99.5 99.6 99.2 99.2 99.2 99.2

Amphora 96.4 97.4 97.5 975 81.5 89.4 84.2 795

Teapot 95.6 95.8 97.5 97.6 82.4 83.5 83.9 87.8
MEAN of CL 99.18 99.10 98.10 99.14 | 9465 94.53 9132 95.59
MEAN of IL 98.02 98.12 95.77 9857 | 89.82 90.63 74.43 91.52
MEAN of All 98.94 98.91 97.63 99.03 |  93.68 93.75 87.94 94.77

Table 4. Ablation — on pose initialization and optimization. The selected configuration (R+IR) performs best overall. We denote the use

of color (1) and reflectance (R) images in a module.

CVPR
#6829



CVPR
#6829

CVPR 2025 Submission #6829. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

o o Pixels AUROC?T Images AUROCT
Class Objects 0.0 03 06 09 1.0 0.0 03 06 09 10
Valve 98.9 98.9 99.3 95.3 94.6 99.0 98.9 98.8 97.5 96.5
Tube 99.6 99.6 99.6 99.2 98.9 95.7 95.6 94.7 90.2 89.4
Cup 99.4 99.3 99.5 98.8 96.8 9.1 922 925 78.1 64.4
USB 99.6 99.6 99.4 98.6 95.0 579 56.7 55.8 56.4 527
Joint 99.6 99.6 99.7 99.7 99.7 94.1 94.1 100.0 99.9 99.9
PaperCup 98.8 98.9 99.1 99.1 99.1 82.9 83.3 91.1 95.5 84.8
Real Lighter 99.8 99.8 99.8 99.5 99.1 973 98.4 99.9 100.0 100.0
Cube 999 99.8 99.3 98.5 98.0 100.0 976 87.7 82.6 69.8
Lamp 959 96.3 95.8 96.5 93.4 100.0 100.0 95.4 95.0 91.6
Bolt 99.6 99.8 98.9 983 97.8 98.4 99.1 99.1 98.9 99.0
Filter 999 99.9 99.9 99.8 98.6 97.6 975 97.0 96.8 759
Wand 99.6 99.6 99.6 99.5 99.4 945 94.4 94.4 93.7 923
Wheel 975 97.5 97.1 952 90.2 94.9 94.5 94.8 88.1 58.6
Bearing 99.7 99.7 99.7 972 92.7 95.6 95.5 95.6 73.7 462
Axletree 96.4 96.4 99.5 95.0 93.1 777 753 95.3 61.7 57.0
Box 993 99.3 99.3 993 99.2 96.1 957 95.9 92.7 9.6
Can 99.4 99.4 99.4 99.4 99.2 99.9 999 99.9 99.9 100.0
Chain 99.1 99.2 99.1 99.0 98.9 100.0 100.0 100.0 100.0 100.0
Gear 97.1 97.1 97.1 97.0 97.0 99.7 99.7 99.7 99.7 99.7
Keyring 99.5 99.5 99.5 99.5 99.5 100.0 100.0 100.0 100.0 100.0
Motor 99.1 99.1 99.0 99.0 98.9 983 983 98.4 98.4 98.5
Syt Parts 99.5 99.5 99.5 99.5 99.3 99.4 99.4 99.4 99.4 99.4
Picker 99.5 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
Section 99.2 99.2 99.2 99.2 99.1 99.5 99.5 99.5 99.5 99.4
Shaft 99.6 99.6 99.6 99.6 99.4 100.0 100.0 100.0 100.0 100.0
Spray_can 99.3 99.3 99.3 993 99.3 100.0 100.0 100.0 100.0 100.0
Spring 99.6 99.6 99.5 99.5 99.6 922 923 92.4 92.6 92.6
Sprockets 99.6 99.6 99.6 99.6 99.4 99.2 992 99.2 99.2 99.2
Amphora 972 97.4 97.5 97.6 97.7 76.8 76.1 79.5 83.4 85.1
Teapot 972 97.6 97.6 97.4 97.6 82.1 84.7 87.8 80.7 84.3
MEAN of CL 99.05 99.08 99.14 98.66 98.07 94.95 94.78 95.59 93.19 91.08
MEAN of IL 98.52 98.62 98.57 97.78 96.03 90.25 90.45 91.52 86.07 73.73
MEAN 98.95 98.98 99.03 98.48 97.66 94.01 93.91 94.77 91.77 87.61

Table 5. Ablation — balance between color and reflectance losses. A weight of 0.6 was chosen to achieve the best performance overall.
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. —_ Pixels AUROC?T Images AUROCY
Class Objects 57 57 ST T 57 ‘ 57 57 ST T 57
Valve 99.3 99.3 99.3 95.7 99.7 98.8
Tube 99.6 99.6 99.6 93.1 90.0 94.7
Cup 99.6 99.5 99.5 96.1 93.8 92.5
USB 99.5 99.4 99.4 51.1 53.6 55.8
Joint 99.8 99.8 99.7 100.0 99.6 100.0
PaperCup 99.1 98.9 99.1 91.8 89.9 91.1
Real Lighter 99.9 99.8 99.8 99.5 98.7 99.9
Cube 99.4 99.2 99.3 90.0 86.7 87.7
Lamp 96.1 94.9 95.8 95.4 88.8 95.4
Bolt 98.9 98.8 98.9 100.0 96.6 99.1
Filter 99.9 99.5 99.9 98.8 82.5 97.0
Wand 99.6 99.5 99.6 93.8 92.9 94.4
Wheel 96.8 96.8 97.1 81.1 98.3 94.8
Bearing 99.7 99.7 99.7 96.4 98.6 95.6
Axletree 99.5 99.6 99.5 93.2 95.1 95.3
Box 99.3 99.5 99.3 95.5 94.0 95.9
Can 99.4 99.5 99.4 99.9 97.7 99.9
Chain 99.1 99.4 99.1 99.8 99.5 100.0
Gear 97.1 97.9 97.1 99.9 98.1 99.7
Keyring 99.6 99.7 99.5 100.0 100.0 100.0
Motor 99.1 99.0 99.0 85.5 97.8 98.4
Synt P?u‘ts 99.6 99.6 99.5 99.3 97.8 99.4
Picker 99.5 99.5 99.4 98.4 96.3 99.4
Section 99.3 99.5 99.2 99.2 98.2 99.5
Shaft 99.5 99.8 99.6 99.5 100.0 100.0
Spray_can 99.4 99.5 99.3 100.0 99.9 100.0
Spring 99.6 99.5 99.5 93.5 87.9 92.4
Sprockets 99.6 99.5 99.6 99.8 88.4 99.2
Amphora 96.5 98.4 97.5 72.6 82.6 79.5
Teapot 97.3 98.0 97.6 83.1 86.7 87.8
MEAN of CL 99.20 99.20 99.14 ‘ 94.84 93.67 95.59
MEAN of IL 98.30 98.65 98.57 ‘ 87.63 90.27 91.52
MEAN of All 99.02 99.09 99.03 ‘ 93.40 92.99 94.77

Table 6. Ablation — on loss components for anomaly detection. Our selected configuration (ST + SF) yields the best results overall. S7
represents the color feature, while S7, denotes the reflectance feature.
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